NEMS and Nano fabrication for bio-applications

Beomjoon KIM, Associate Professor

Center for International Research on Micro Mechatronics (CIRMM) Institute of Industrial Science The University of Tokyo

LIMMS Research Coverage

- **New NANOTECHNOLOGIES (process and characterization)**
- ADVANCED INTEGRATION of MEMS & NEMS functions

Micro and nanotech applied to the BIOLOGY 21

 1993-1998 東京大学精密機械工学専攻、生産技術研究所 増沢研 修士/博士

 マイクロ放電加工
 WEDG: Wire Electro Discharge Grinding

細穴の内部形状の測定

AFM/STM Like ?

A microhole in quarts glass machined by USM (ultrasonic machining)

GOAL: To achieve Low-cost, high performances (high sensitivity, integrated functions, etc.) Bio-sensors

Unconventional Nano fabrication

Mix and Match Unconventional Nano patterning technology

- Development of (1) <u>unconventional micro/nano patterning</u>

(1) 広面積、新規ナノパターニング技術の開発(ソフトリソグラフィー、プローブリソ、シャドウパターン)

SAM表面処理法を用いた生体細胞のパターニング

100sec

100sec.

Calcium

Calcium

Fabrication of Micro Structures on Convex/ Concave Substrates

CIRMM/Institute of Industrial Science, The University of Tokyo

平成24年3月終了予定 博士論文予備審査 2011.11.21

9

Previous work:

Temperature mapping with Ni nanowire & Rhodamine B

1. Capture fluorescent images:

Peter Löw et al, Small

(2008)

I_{Ref}

Intensity changes

a) Reference image - **I_{Ref}**

2. Normalization of intensity changes: IHeated/IBef

20 µm

b) Image of heated structure - I_{Heated}

Heated

3. Conversion to temperature

Cell heating and HSP-expression result

Patrick et al. Lab Chip (2011)

Non-conventional fabrication of fieldeffect transistor silicon nanowire based label-free biosensors

P. Ginet, S. Akiyama, H. Fujita and B.J. Kim Institute of Industrial Science, The University of Tokyo

Silicon nanowires : FET functionalization

□ A top-gate gold electrode is used to adress individually each NW array and to avoid the high voltages required for backside type gate electrodes

タンパク質のセンシング

Real Hot Topics at this moment

 Micro heaters chamber device→Supramolecular interaction between biomolecules and calixerenes capped Silver nanoparticles. Study of the mechanism of aggregation and the effect on the plasmonic resonance, nucleotides

• New investigation of thermal conductance in nanostructures \rightarrow

Surface phonon polaritons Heat transfer enhancement ?

abnormal heat conduction phenomena related to ballistic regimes of transport. Design by modeling a micro/nano structure that allows for strongly enhancing the coupling between SPPs. Experimental works to prove their contribution to heat conduction.

NOT Published YET

The 2nd stage ;DNA electrophoresisunder pressure oradiant in
LONG DNA separation success!nanoslit device- Length dependant mobility

'Shadow evaporation' to achieve the device scale to deform DNA.

Anisotropic etching' of zigzag pattern to achieve the repetitive deformation of DNA.

The length dependent mobility in chamber-channel type device

-Practical Point-of care & disposable bio-sensor chip (interface with electrical signals). - "Chip in a Lab"-> Smart Portable " Lap on a Chip"

Biosensors:

Fabrication Results

2. Single-cell Electroporation Microchip with Three Dimensional Si Microelectrodes for Gene Transfection 単一細胞のエレクトロポレーション用マイクロチップの開発と分析

Simulation results of electric field around microcantilever electrodes (Max≈ 3×10⁴ V/m)